CEL-Seq2 Protocol in the C1[™]

This document is a merging of Supplementary file 1 and Supplementary file 2 from the publication T. Hashimshony, T. N. Senderovich, G. Avital, A. Klochendler, Y. de Leeuw, L. Anavy, D. Gennery, S. Li, K. J. Livak, O. Rozenblatt-Rosen, Y Dor, A. Regev, and I. Yanai. CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. *Genome Biol* **17**:77 (2016).

Reagents:

Ultra pure RNase free water Ethanol Bioanalyzer kits - Agilent RNA pico kit (5067-1513), high sensitivity DNA kit (5067-4626) Qubit reagents: dsDNA HS Assay – Invitrogen Q32851 or Q32854

For RNA amplification:

ERCC RNA spike-in mix - Thermo Fisher Scientific 4456740 C1 Open App IFC – Fluidigm 100-8133 (5–10 μm), 100-8134 (10–17 μm), 100-8135 (17–25 μm) C1 Open App Reagent Kit – Fluidigm 100-8920 NP-40, 10% – Thermo Fisher Scientific 28324 5× Lysis buffer: 2.5% NP-40, 250 mM Tris-HCl, pH 8.4, 5 mM EDTA DTT (dithiothreitol) – Teknova D9750 dNTP Mix, 25 mM each – Thermo Fisher Scientific R1121 rNTP Mix, 25 mM each – New England BioLabs N0466S SuperScript II – Thermo Fisher Scientific 18064014 (includes 5× First Strand Buffer) RNaseOUT – Thermo Fisher Scientific 10777019 Second Strand Buffer – Thermo Fisher Scientific 10812014 DNA Polymerase I (E. coli) – Thermo Fisher Scientific 18010025 E. coli DNA ligase – Thermo Fisher Scientific 18052019 RNaseH (E. coli) – Thermo Fisher Scientific 18021071 MEGAscript T7 Transcription Kit – Thermo Fisher Scientific AM1334 ExoSAP-IT for PCR Product Clean-Up – Affymetrix 78200 Fragmentation buffer: 200 mM Tris-acetate, pH 8.1, 500 mM KOAc, 150 mM MgOAc Fragmentation stop buffer: 0.5 M EDTA pH 8 AMPure XP beads – Beckman Coulter A63880 RNAClean XP beads - Beckman Coulter A63987 Bead binding buffer - 20% PEG8000, 2.5 M NaCl

For Library preparation:

SuperScript II – Thermo Fisher Scientific 18064014

RNaseOUT – Thermo Fisher Scientific 10777019

AMPure XP beads – Beckman Coulter A63880

Phusion[®] High-Fidelity PCR Master Mix with HF Buffer – New England BioLabs M0531

randomhexRT primer – GCCTTGGCACCCGAGAATTCCANNNNN RNA PCR primers (sequences available from Illumina) RP1 – AATGATACGGCGACCACCGAGATCTACACGTTCAGAGTTCTACAGTCCG*A, *=phosphorothioate RPi1 – CAAGCAGAAGACGGCATACGAGATCGTGATGTGACTGGAGTTCCTTGGCACCCGAGAATTCC*A Primers re-suspended at 100 μM, PCR primers used at 10 μM.

Equipment:

Thermocycler with lid with adjustable temperature (one that can also fit 0.5 ml PCR tubes is convenient) Oven (optional) Magnetic stand (for 0.5 ml tubes) Qubit[®] Fluorometer - invitrogen Bioanalyzer – Agilent

Primers:

CEL-Seq2 primer design: The RT primer was designed with an anchored polyT, a 6 bp unique barcode, a 6 bp UMI (unique molecular identifier), the 5' Illumina adapter (as used in the Illumina small RNA kit) and a T7 promoter. The barcodes were designed such that each pair is different by at least two nucleotides, so that a single sequencing error will not produce the wrong barcode. Primers are desalted at the lowest possible scale, stock solution $1 \mu g/\mu l$, working concentration 25 ng/ μL .

1s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGACTCTTTTTTTTTT
2s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGCTAGTTTTTTTTTT$
3s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGCTCATTTTTTTTTT$
4s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGCTTCTTTTTTTTTT$
5s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCATGAGTTTTTTTTTT$
6s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCATGCATTTTTTTTTT$
7s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCATGTCTTTTTTTTTT$
8s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCACTAGTTTTTTTTTT$
9s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCAGATCTTTTTTTTTT$
10s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCACAGTTTTTTTTTT$
11s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGGATCTTTTTTTTTT$
12s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGTGCATTTTTTTTTT$
13s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGTGTCTTTTTTTTTT$
14s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCCTAGTTTTTTTTTT$
15s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCTGAGTTTTTTTTTT$
16s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCTGCATTTTTTTTTT$
17s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCGAAGTTTTTTTTTT$
18s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCGACATTTTTTTTTT$
19s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCGATCTTTTTTTTTT$
20s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTACAGTTTTTTTTTT$
21s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTACCATTTTTTTTTT$

22s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTACTCTTTTTTTTTT
23s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTCTAGTTTTTTTTTT
24s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTCTCATTTTTTTTTT
25s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTTGCATTTTTTTTTT
26s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTGACATTTTTTTTTT
27s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNGTGATCTTTTTTTTTT
28s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACAGTGTTTTTTTTTT
29s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACCATGTTTTTTTTTT
30s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACTCTGTTTTTTTTTT
31s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACTCGATTTTTTTTTT
32s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACGTACTTTTTTTTTT$
33s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACGTTGTTTTTTTTTT$
34s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACGTGATTTTTTTTTT$
35s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTAGACTTTTTTTTTT$
36s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTAGTGTTTTTTTTTT$
37s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTAGGATTTTTTTTTT$
38s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTCATGTTTTTTTTTT$
39s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNCTCAGATTTTTTTTTT
40s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNCTTCGATTTTTTTTTT
41s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNCTGTACTTTTTTTTTT
42s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNCTGTGATTTTTTTTTT
43s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGAGACTTTTTTTTTT
44s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGCAACTTTTTTTTTT
45s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGCATGTTTTTTTTTT
46s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGCAGATTTTTTTTTT
47s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGTCACTTTTTTTTTT
48s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNTGTCGATTTTTTTTTT
49s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGGTACTTTTTTTTTT
50s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGACATGTTTTTTTTTT
51s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGATCACTTTTTTTTTT
52s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGATCTGTTTTTTTTTT
53s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGATCGATTTTTTTTTT
54s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGAGTACTTTTTTTTTT
55s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGACAGTTTTTTTTTT
56s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGACCATTTTTTTTTT
57s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGTGAGTTTTTTTTTT
58s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGGAAGTTTTTTTTTT
59s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNAGGACATTTTTTTTTT
60s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCAACAGTTTTTTTTTT
61s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCAACCATTTTTTTTTT
62s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNCAACTCTTTTTTTTTT
63s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNCACTCATTTTTTTTTT
64s	
65s	
66s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCAGACATTTTTTTTTT

67s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNNTCACCATTTTTTTTTT
68s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCACTCTTTTTTTTTT$
69s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCCTCATTTTTTTTTT$
70s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCCTTCTTTTTTTTTT$
71s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTCTGTCTTTTTTTTTT$
72s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTCTTCTTTTTTTTTT$
73s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTTGAGTTTTTTTTTT$
74s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTTGTCTTTTTTTTTT$
75s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGTGAAGTTTTTTTTTT$
76s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACAGACTTTTTTTTTT$
77s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACAGGATTTTTTTTTT$
78s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACCAACTTTTTTTTTT$
79s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACCAGATTTTTTTTTT$
80s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNACTCACTTTTTTTTTT$
81s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTCAACTTTTTTTTTT$
82s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTTCACTTTTTTTTTT$
83s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTTCTGTTTTTTTTTT$
84s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNCTGTTGTTTTTTTTTT$
85s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGAGTGTTTTTTTTTT$
86s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGAGGATTTTTTTTTT$
87s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGTCTGTTTTTTTTTT$
88s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGGTTGTTTTTTTTTT$
89s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNTGGTGATTTTTTTTTT$
90s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGAAGACTTTTTTTTTT$
91s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGAAGTGTTTTTTTTTT$
92s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGAAGGATTTTTTTTTT$
93s	GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGACAACTTTTTTTTTT
94s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGACAGATTTTTTTTTT$
95s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGAGTTGTTTTTTTTTT$
96s	${\tt GCCGGTAATACGACTCACTATAGGGAGTTCTACAGTCCGACGATCNNNNNGAGTGATTTTTTTTTT$

C1 Mixes

Lysis Mix (1000 μL)

- 280 μ L 5× Lysis Buffer
- $28 \hspace{0.1in} \mu L \hspace{0.1in} 1 \hspace{0.1in} M \hspace{0.1in} DTT$
- 4 μL 40 units/μL RNaseOUT
- 8 $\,\mu$ L 1:10,000 dilution of ERCC RNA Spike-In Mix
- 70 μL C1 Loading Reagent
- $610 \mu L H_2O$

7 μL Lysis Mix to Inlet #3

Diluted CEL-Seq2 Primers

Dispense 8 μ L Lysis Mix to each of 96 wells

Add 2 μL 25 ng/ μL CEL-Seq2 Primer to each well

5 μ L Diluted CEL-Seq2 Primer to each of 96 Harvest Outlets

<u>RT Mix</u> (28.6 μL)

- 20 $\,\mu\text{L}\,$ 5× First Strand Buffer
- 2.6 µL 40 units/µL RNaseOUT
 - $2 \mu L 25 mM each dNTP$
- 2.6 µL 200 U/µL SuperScript II Reverse Transcriptase
- 1.4 µL C1 Loading Reagent

7 $\mu\text{L}\,\text{RT}\,\text{Mix}$ to Inlet #4

2nd Strand Mix (100 µL)

- 24.7 $\,\mu\text{L}\,$ 5× Second Strand Buffer
 - $1 \mu L 25 mM each dNTP$
- 3.3 μL 10 units/μL E.coli DNA polymerase
 - 1 μ L 10 units/ μ L E. coli DNA ligase
 - 1 μL 2 units/μL RNase H
 - 5 μ L C1 Loading Reagent
- $64 \mu L H_2O$

24 $\mu\text{L}~2^{\text{nd}}$ Strand Mix to Inlet #7

<u>IVT Mix</u> (29.6 μL)

- 6.6 µL T7 10× Reaction Buffer (MEGAscript kit)
- 14.9 $\,\mu\text{L}\,$ 25 mM each rNTP
- 6.6 µL T7 Enzyme Mix (MEGAscript kit)
- 1.5 μ L C1 Loading Reagent

24 µL IVT Mix to Inlet #8

C1 Steps

- 1. 96 Diluted CEL-Seq2 Primers to chamber 1 from the 96 Outlet wells
- Lysis Mix to chambers 0+1+2 from Inlet #3 65°C, 5 min (300 sec) 10°C, 1 min (60 sec)
- <u>RT Mix</u> to chambers 0+1+2+3 from Inlet #4 42°C, 120 min (7200 sec) 10°C, 1 min (60 sec)
- <u>2nd Strand Mix</u> to chambers 0+1+2+3+4 from Inlet #7 16°C, 120 min (7200 sec)
 65°C, 20 min (1200 sec)
 10°C, 1 min (60 sec)
- <u>IVT Mix</u> to chambers 0+1+2+3+4+5 from Inlet #8 37°C, 12 hr (12× 3600 sec) 10°C, 1 min (60 sec)
- 6. Harvest

aRNA Clean up

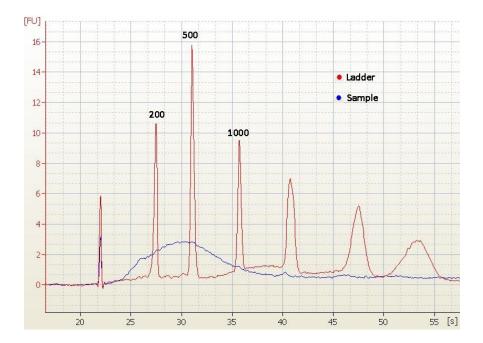
- 1) Pool 2.5 μ L of each of the harvested aRNA libraries (~240 μ L total)
- 2) Add 1.8× volumes (430 μL) of RNAClean XP beads to the harvested aRNA. Mix well until the liquid appears homogeneous. Incubate for 10 min at room temperature.
- 3) Bind beads on a magnetic stand for 5 min.
- 4) Discard the supernatant.
- 5) Wash 3 times with 70% ethanol.
- 6) Air dry for 10 min or until completely dry.
- 7) Resuspend the beads with 16 μ l RNase-free water. Incubate in room temperature for 2 min.
- 8) Bind beads on a magnetic stand for 5 min.
- 9) Transfer the eluted aRNA to a new Eppendorf, continue with ExoSAP treatment, as in regular CEL-Seq2 protocol.

EXO-SAP treatment (to remove primers):

- Add 6 µL enzyme
- Incubate at 15 minutes at 37 °C

RNA fragmentation:

- Mix the following on ice:
 - aRNA 22 μL
 - Fragmentation buffer 5.5 µL
- Incubate for 3 min. at 94°C.
- Immediately move to ice and add 2.75 µL Fragmentation stop buffer.


aRNA cleanup:

- Prewarm RNAClean XP beads to room temperature.
- Vortex RNAClean XP beads until well dispersed, add to sample 55 μL beads. (1.8 volumes)
- Incubate at room temperature for 10 min.
- Place on magnetic stand for at least 5 min, until liquid appears clear.
- Remove and discard 50 µL of the supernatant.
- Add 200 µL freshly prepared 70% EtOH.
- Incubate at least 30 seconds, then remove and discard supernatant without disturbing beads.
- Repeat wash two more times.
- Air dry beads for 15 min, or until completely dry.
- Resuspend with 7 µL water. Pipette entire volume up and down ten times to mix thoroughly.
- Incubate at room temperature for 2 min.
- Place on magnetic stand for 5 min, until liquid appears clear.
- Transfer supernatant to new tube.

Stopping point: Samples can be kept at -80°C

Check aRNA amount and quality:

- Load 1 μ L onto Bioanalyzer RNA pico chip after heating an aliquot of the sample to 70° for 2 min.
- When starting the IVT with ~0.1 ng total RNA, the expected yield is 500-1000 pg/ μ L. Size distribution should peak at ~500 bp (See Bioanalyzer plot for example). If yield is higher, dilute a portion of aRNA to 1 ng/ μ L for the RT step below.

Library preparation:

RT reaction:

To 5 μL aRNA, add 1 μL randomhexRT primer and 0.5 μL 10 mM each dNTP.

Incubate 5 min at 65 °C, quick chill on ice.

• Add 4µl of the following mix at room temperature to each reaction:

First Strand buffer	2 μL
DTT 0.1M	1 μL
RNaseOUT	0.5 μL
SuperscriptII	0.5 μL
Saperseriptii	0.0 p

Incubate 10 min at 25 °C.

Incubate 1 hr at 42°C (in hybridization oven, or pre heated thermal cycler with lid at 50 °C)

PCR amplification:

To each reverse transcription reaction add 38 μL of the following mix:

•	Ultra Pure Water	11 μL
•	PCR Master Mix	25 μL
•	RNA PCR Primer (RP1, from Illumina kit)	2 μL

To each reaction add 2 μ L of a uniquely indexed RNA PCR Primer (e.g. RPi1; if mixing multiple libraries for sequencing, choose balanced primers according to Illumina's pooling guide)

Amplify the tube in the thermal cycler using the following PCR cycling conditions:

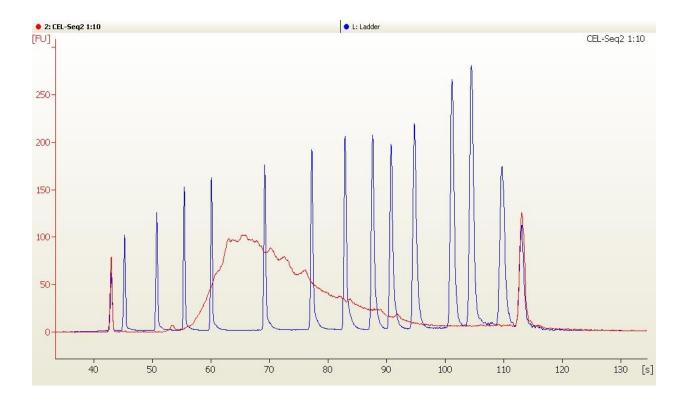
- 30 seconds at 98°C
- 11 cycles of:
 - 10 seconds at 98°C
 - 30 seconds at 60°C
 - 30 seconds at 72°C
- 10 minutes at 72°C
- Hold at 4°C

Can go up to 15 cycles if necessary, if aRNA concentration was low.

Stopping point: samples can be kept at -20°C.

Bead Cleanup of PCR products – Repeat 1:

- Prewarm beads to room temperature.
- Vortex AMPure XP Beads until well dispersed, then add 50 μ L to the 50 μ L PCR reaction. Mix entire volume up ten times to mix thoroughly.
- Incubate at room temperature for 15 min.
- Place on magnetic stand for at least 5 min, until liquid appears clear.
- Remove and discard 95 µL of the supernatant.
- Add 200 µL freshly prepared 80% EtOH.
- Incubate at least 30 seconds, then remove and discard supernatant without disturbing beads.
- Add 200 µL freshly prepared 80% EtOH
- Incubate at least 30 seconds, then remove and discard supernatant without disturbing beads.
- Air dry beads for 15 min, or until completely dry.
- Resuspend with 25 µL water. Pipette entire volume up and down ten times to mix thoroughly.
- Incubate at room temperature for 2 min.
- Place on magnetic stand for 5 min, until liquid appears clear.
- Transfer 25 μ L of supernatant to new tube.


Bead Cleanup of PCR products – Repeat 2:

Repeat as above, adding 25 μL beads and eluting in 10 μL water at the end, transferring 10 μL to a new tube.

Check library amount and quality:

Check concentration of DNA by Qubit, 1 μ L should be enough to measure using the high sensitivity reagent; expected concentration is at least ~1ng/ μ l.

Run 1 μ L of each sample on Bioanalyzer using a high sensitivity DNA chip to see size distribution. Expected peak at 200-400 bp (See Bioanalyzer plot for example).

Concentration to be loaded for sequencing should be calibrated by the sequencing facility. We are using 8 pM with HiSeq high throughput v.3 reagents, or 12 pM on MiSeq and HiSeq rapid mode. Paired end sequencing is performed, 15 bases for read 1, 7 for the illumine index (when needed) and 36 bases for read 2. Throughout the Illumina sequencing the libraries should be considered Small-RNA libraries. For example, in Illumina Rehyb. kits, some Illumina kits are not for Small-RNA.

Currently, CEL-Seq2 libraries are not compatible with Illumina HiSeq high throughput v.4 reagents.